over the surface above the source will yield sufficiently precise information. The source temperature in this
case is ~109 lower than for the single-layer Si structure.

The foregoing results confirm the legitimacy of simplified calculations neglecting the influence of the
layers and treating the heat-conduction problem in the crystal ofa semiconductor IC as in a homogeneous Si
domain. Experiments on the source temperature from the surface of an IC having an Si —Si0, — Al structure
yield excessively low results.

Analogous calculations of the temperatures on the faces of the structure 8i—8i0, — Al for Bi=0.75 - 1073
show that the external heat-transfer rate has virtually no effect on the relief of the temperature field.
NOTATION

A=9/0x> + 82 /0y® +9%/92%, Laplace operator; 0p(x, ¥, 2) =Tr(x, ¥, 2) — Tme; Tp(X, ¥, z), temperature
in the r-th layer; Tme, temperature of medium; Af, 8i, thermal conductivity and thickness of i-th layer; § =
p/ 7\3\’? P, power of local source; V=21,%2l,xh; e(x), unit Heaviside function; , heat-transfer coefficient;
€,7M, center coordinates of source; k number of layers covering the source.
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SOLUTION OF THE UNSTEADY HEAT-CONDUCTION
EQUATION IN AN INHOMOGENEOUS MEDIUM

A.A. Puchkov UDC 517.9:536.21
The solution of an unsteady two-dimensional heat-conduction problem in an inhomogeneous medium
is investigatedby using differential operators.

If there are no heat sources or sinks within a body, the unsteady two-dimensional heat-conduction prob-
lem is described by the equation

aT [ 02T 0T ar aT . oa oT
&y — =1 + +o——t—— —, (1)
v ot ( 0x? dy? ) " ox dy dy
where the thermal conductivity A =A(x, y), the density y = y(x, y), andthe specific heat ¢ =¢(x, y)are given
functions of the coordinates x and y.
We seek the solution of Eq. (1) which satisfies appropriate boundary conditions [1} and has the form
T=1()¥(x, y). (2)

Substituting (2) into (1) and introducing the separation of variables parameter —p?

tions

, we obtainthe two equa-~

& g 3)
dt
a2
AY +~ —;— grad ¥ grad & + LY; ¥=0, “4)

where A isthe two-dimensional Laplacian.

Hence it follows that the solution of Eq. (1) canbe written in the form
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T(x g )= 3 A ¥, (5 o). )

v=1
We solve Eq. (4) by Bergman's method of linear operators in differential form [2, 3].

Assuming that the parameters A, ¢, and y are functions only of the variablex, we constructthe solution
of (4) inthe form

¥(r, )= 3 dy (1) 0 (2). ®)

r=0
Here &(z) is an arbitrary function of the complex variable z =x +iy. The realand imaginary parts of (6) are solu-
tions, and sois a linear combination of them, since Eq. (4) is linear.

We determine the real coefficients dp(x) from the condition that(6) satisfies Eq. (4). Substituting (6) into
(4) we obtain

N N vicy . A
2 dy+ 2 d; + d,) o® - (2d,,; LS 1) | _
[( Y X ) 1 -y d,| o 0. "

n=0

The arbitrary function é(z) willconvert Eq. (7) toan identity if we require the coefficients dn(x) to satisfy
the conditions

L, o, 2
do -+ a do + v;‘y

dy =0; ®

" e . vicy , A
dy— —— dy + ——d, = — 2y~ — d,_ n=12 ...
- L, ( = ,) ( ) (9)

I, e.g., we specify or approximate the coefficients A, ¢, and y by power functions

h==ax?; ¢y=0bx" (a>0, b>0),

Eq. (8) reduces to Bessel's equation ¢
x?dy — pxdy + 8P+ dy =0 (82 = bla). (11)

Its solution is [4]
dy = xti-n2 Y, ( ; QSVJ 5 xta—p+2)/2 ) (s = (1—p)(g—p-+2)). (12)

Here Yg is a linear combination of Bessel functions of the first and second kind.

Using the properties of Bessel functions for p=q =2, it is not difficult to obtainthe following expressions
for the first two coefficients d, and d;:

ay = B sindv (x + by);
x

(13)
a; = B sin &v (x 4+ b,) — Bysindv (x +by).
x
I ®(z) in (6) is given inthe form of a power function
D (2) = ¢, (14)

where k is a positive integer, series {6) will contain a finite number of terms, and there isno questionabout
its convergence. For example, let k=1. Then Eq. (6) takes the form

¥ (x, y) =a(x) 2+ a (%) 15)

Forming the sum ofthe realand imaginary parts of function (15), taking account of (13) forb; =b;=0, and
using (5), we obtain

T(x, 90 t)= —1—3%&)!—/— E A e~V sin bvx. (16)
v=1
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If By=1, By = —h, 6 =27/1, solution (16) will satisfy the special boundary conditions
T(x, 4y, 0)=T(x, h, ) =T (L, y, 1) =0,

T(x g, 0) =l y) = y:" F)- (17)

Here h and ] are parameters defining the dimensions of the body andf(x) is a givenfunction which canbeexpand-
ed in the interval (0, I) in 2 Fourier sine series with the argument jvx.

Ingeneral, itis convenient to choose the function &(z) in (6) in the form ofa complex Fourier series

D(2) = 2 (C e~z -1 D, en02),

n=1

where the coefficients C,, and D, are determined so that solution (6) satisfies the boundary conditions.

Approximate solutions of Eq. (4), and consequently alsoof (1), can be treated when 2, ¢, and vy depend
on the two coordinatesx and y.

Setting v =1 in (4), we seek the solution of this equation in the form

¥(x, y)=alx D). (18)
Substituting (18) into (4), we obtain the expression
1 cy da , , da) . a (% . Oh ,
.. 3 NN 2] = L)+~ = il =0. (19)
(Aa, xgrad}grada Y a)(b—i—[ (ax i 3 . ax—l—t ay)

The arbitrary function &(z) satisfies this equation only when the conditions

Aa-+ - gradigrad a + _97.2’— a=0,
A

(20)
da a Oi da a OA
2 —+ — =0 2—+4— — =0
dx * Lo Ox dy L Oy (21)
are satisfied.
Substituting into (20) @ =D/vA found from (21), we obtain
1 30
Ak T [grad A + 2cy =0
or
AVZAM2 Loy = 0. (22)
If,e.g., we set
oy = b(x2 -+ RPA2, (23)
the solution of (22) will have the form
2 | 2t
A2 = F (z) — - b(x )P (24)

4(p+ 12
where F(z) isanarbitrary analytic function of the complex argument z =x +iy. The arbitrariness in the function
(23) and (24) can be used fo approximate the given or experimentally determined spatial dependences of A, ¢,
and vy.
NOTATION

T, temperature; t, time; x, y, linear coordinates; A, thermal conductivity; vy, density; ¢, specific heat;
T(x,y, t), 7(t), ¥(x, y), dn(x), and a(x, y), unknown functions; ¢(x), f(x), given functions; &(z), arbitrary
function; Ay, By, b, bg by, Cny Dn, and By, undetermined constants.
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